Theoretical aspects of tunneling-current-induced bond excitation and breaking at surfaces.

نویسندگان

  • N Lorente
  • M Persson
چکیده

We have performed a density functional study of the electronic structure, images and vibrationally inelastic tunneling in the scanning tunneling microscope and vibrational damping by excitation of electron-hole pairs of CO chemisorbed on the (111) and (100) faces of Cu. We find that the 2 pi* molecular orbital of CO turns into a broad resonance with parameters that differ significantly from those suggested by inverse and two-photon photoemission measurements. The calculated vibrational damping rate for the internal stretch mode and relative changes in tunneling conductance across vibrational thresholds are in agreement with experiment. The non-adiabatic electron-vibration coupling is well described by the Newn-Anderson model for the 2 pi*-derived resonance whereas this model is not able to describe the non-adiabatic coupling between the tunneling electrons and the vibration. We believe that this model misses an important mechanism for vibrational excitation in tunneling that involves the change of tunneling amplitude by deformation of the tails of the one-electron wavefunctions with vibrational coordinate.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Controlling organic reactions on silicon surfaces with a scanning tunneling microscope: theoretical and experimental studies of resonance-mediated desorption.

The dynamics of tip-induced, resonance-mediated bond-breaking in complex organic adsorbates is studied theoretically and experimentally. Desorption of benzene from a Si(100) surface is found to be efficient and sensitive to voltage, the measured yield rising from below 10(-10) to ca. 10(-6) per electron within a ca. 0.8 V range at low (< 100 pA) current. A theoretical model, based upon first pr...

متن کامل

Hydrogen bond network rearrangement dynamics in water clusters: Effects of intermolecular vibrational excitation on tunneling rates.

Theoretical studies of hydrogen bond network rearrangement (HBNR) dynamics in liquid water have indicated that librational motions initiate the hydrogen bond breaking/formation processes. We present the results of using a simple time evolution method to extract and compare the tunneling lifetimes for motions that break and reform the hydrogen bond for the water dimer, trimer, and pentamer from ...

متن کامل

Full-dimensional potentials and state couplings and multidimensional tunneling calculations for the photodissociation of phenol

We present an improved version of the anchor points reactive potential (APRP) method for potential energy surfaces; the improvement for the surfaces themselves consists of using a set of internal coordinates with better global behavior, and we also extend the method to fit the surface couplings. We use the newmethod to produce a 3 3 matrix of diabatic potential energy surfaces and couplings for...

متن کامل

Selective Bond Breaking of Single Iodobenzene Molecules with a Scanning Tunneling Microscope Tip

Controlled step-by-step dissociation of single iodobenzene molecules has been performed at Cu(111) step-edges using tunneling electrons from a scanning tunneling microscope (STM) tip at 12 K. We show that the threshold tunneling electron energies to break a single bond inside a polyatomic molecule can be determined by using I-V spectroscopy of single molecules. Electron energies of 1.5±0.1 eV a...

متن کامل

Adsorbate motions induced by inelastic-tunneling current: theoretical scenarios of two-electron processes.

We discuss how the excitation of high-frequency modes in adsorbed molecules may result in motion (e.g., rotation, translation, or dissociation) of the molecules. Our study is based on rate equations and considers one- and two-vibrational excitation processes, corresponding to linear and quadratic dependences of the reaction rate on the tunneling current in the case the scanning tunneling micros...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Faraday discussions

دوره 117  شماره 

صفحات  -

تاریخ انتشار 2000